Projection-Based Model Reduction for Time-Varying Descriptor Systems Using Recycled Krylov Subspaces
نویسندگان
چکیده
We will present a projection approach for model reduction of linear time-varying descriptor systems based on earlier ideas in the work of Philips and others. The idea behind the proposed procedure is based on a multipoint rational approximation of the monodromy matrix of the corresponding differential-algebraic equation. This is realized by orthogonal projection onto a rational Krylov subspace. The algorithmic realization of the method employs recycling techniques for shifted Krylov subspaces and their invariance properties. The proposed method works efficiently for macromodels, such as time varying circuit systems and models arising in network interconnection, on limited frequency ranges. Bode plots and step response are used to illustrate the performance of the reduced order models.
منابع مشابه
Model Reduction for Time-Varying Descriptor Systems Using Krylov-Subspaces Projection Techniques
We will present a projection approach for model reduction of linear time-varying descriptor systems based on earlier ideas in the work of Philips and others. The idea behind the proposed procedure is based on a multipoint rational approximation of the monodromy matrix of the corresponding differential-algebraic equation. This is realized by orthogonal projection onto a rational Krylov subspace....
متن کاملModel Reduction of Descriptor Systems by Interpolatory Projection Methods
In this paper, we investigate interpolatory projection framework for model reduction of descriptor systems. With a simple numerical example, we first illustrate that employing subspace conditions from the standard state space settings to descriptor systems generically leads to unbounded H2 or H∞ errors due to the mismatch of the polynomial parts of the full and reducedorder transfer functions. ...
متن کاملIntroduction to Krylov Subspace Methods in Model Order Reduction
In recent years, Krylov subspace methods have become popular tools for computing reduced order models of high order linear time invariant systems. The reduction can be done by applying a projection from high order to lower order space using the bases of some subspaces called input and output Krylov subspaces. The aim of this paper is to give an introduction into the principles of Krylov subspac...
متن کاملKrylov Subspace Methods in Linear Model Order Reduction: Introduction and Invariance Properties
In recent years, Krylov subspace methods have become popular tools for computing reduced order models of high order linear time invariant systems. The reduction can be done by applying a projection from high order to lower order space using bases of some subspaces called input and output Krylov subspaces. One aim of this paper is describing the invariancies of reduced order models using these m...
متن کاملKrylov Subspace Type Methods for Solving Projected Generalized Continuous-Time Lyapunov Equations
In this paper we consider the numerical solution of projected generalized continuous-time Lyapunov equations with low-rank right-hand sides. The interest in this problem stems from stability analysis and control problems for descriptor systems including model reduction based on balanced truncation. Two projection methods are proposed for calculating low-rank approximate solutions. One is based ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008